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Spectral properties of atoms in fields: A semiclassical analysis

P. N. Walker and T. S. Monteiro
Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom

~Received 9 August 1999!

We develop a semiclassical theory for the spectral rigidity of nonhydrogenic Rydberg atoms in electric
fields, and evaluate the significant deviations from the well-known Poissonian behavior in the hydrogenic case.
The resulting formula is shown to be in excellent agreement with the exact quantal result. We also investigate
diamagnetic atoms; we find that, in contrast to the classically integrable atoms, diffraction has a small effect on
the spectral rigidity in the classically chaotic atom. We show that our predictions can also be of use in the
mixed phase space regime.

PACS number~s!: 05.45.2a, 03.65.Sq, 32.60.1i
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The short-range spectral properties of nonhydrogenic
dberg atoms in external fields were recently found to have
unexpected character@1#: the nearest neighbor distributio
was neither Poisson nor Wigner-Dyson, but close to a n
generic intermediateclass known ashalf-Poisson. These
findings have been investigated experimentally for heli
atoms in electric fields@2#, following much interest in the
dynamics of nonhydrogenic atoms in weak fields and
effects ofcore-induced chaos@3–7#. Concurrently, there ha
also been much interest in such intermediate nearest ne
bor distributions@8,9#, with broad application in problem
such as electron-electron interactions in closed mesosc
devices@9,10#, the metal-insulator transition@11#, intruder
states in nuclear physics@12#, and inclusions in billiards@8#.
These studies of intermediate statistics have exclusively
ployed quantum calculations.

Here we obtain spectral rigidities of nonhydrogenic Ry
berg atoms in electric and magnetic fields from an accu
quantal calculation. We find interesting and substantial
viations from Poissonian~hydrogenic! behavior in the inte-
grable ~electric field! and near integrable~weak magnetic
field! cases. We develop a semiclassical theory for St
spectra which is in good agreement with the quantal resu
and show that one-scatter diffractive orbits account for m
of the effect. In contrast we find a comparatively small effe
in the case of fully chaotic Rydberg atoms. To our know
edge this is the first analysis of the curve form of the spec
rigidity for a generic atom, which we derive from classic
dynamical information. Our semiclassical analysis should
extendable to the mixed phase space Kolmogorov-Arno
Moser ~KAM ! case.

The spectral rigidity, defined as

D~L !5min
A,B

r

LE2L/2r

L/2r

dê @N~E1e!2A2Be#2&E , ~1!

whereN(E) is the spectral staircase function,r is the den-
sity of states~assumed constant over the range ofL to be
considered!, and ^•••&E denotes averaging over the spe
trum, was first analyzed semiclassically for classically in
grable and chaotic systems by Berry@13#. It provides a mea-
sure of long-ranged deviations from the Weyl rule f
spectral density, and for diffraction-free systems is control
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@for L*O(1)# by classical dynamical correlations. ForL
&O(1) it converges universally to the formD(L)5L/15 for
symmetry reduced spectra.

The hydrogen atom in a static electric field~of strengthF)
or in a magnetic field~of strengthB) provided some of the
cleanestillustrations of integrability, mixed phase space, a
chaos in a real system@14#. The dynamics of the electron i
two-dimensional and has a useful scaling property: the c
sical dynamics depends only on a scaled energye5Ek2,
wherek5F21/4 for the electric field case andk5B21/3 for
the magnetic field case. This property is exploited in bo
experiment and theory. Spectra are obtained at fixede, and
the corresponding eigenvaluesk i represent effective value
of \21 with fixed classical dynamics. Hydrogen in a ma
netic field is near integrable fore,20.5; as the field is
increased it makes a gradual transition to full chaos ate.
20.1. The Hamiltonian for hydrogen in an electric field
always separable. We consider field values where the eig
values are well below the ionization threshold ate522, so
the system may be considered integrable and bound.

Most experiments in fact investigate atoms other than
drogen~typically He, Li, or Rb!. The useful scaling property
may still be exploited, but the inner core of electrons yie
nontrivial effects: additional weak spectral modulations a
spectral statistics near the Wigner-Dyson limit even for
integrable–near integrable regime@4–6#. Hence the interes
in so-calledcore-induced chaos. The additional modulations
are accurately described by diffractive periodic orbit theo
@7,15#. An investigation @1# of the next nearest neighbo
~NNS! statistics for the lowest 40 000 eigenvalues show
that they are only near the Wigner-Dyson limit for the lowe
;1000 states. For small\ they were found to make a tran
sition to an intermediate distributionP(s);ase22s with
(a;3 –4), near to the half-Poisson distribution~for which
a54).

Rydberg atoms and molecules are well described by qu
tum defect theory, one of the most widely used theories
atomic physics@14,3#. The core is described by a set of pha
shifts ~quantum defects! d l in each partial wave, quantifying
the departure from pure Coulomb behavior. We consider
s-wave scattering case, whered0 is the only nonzero phas
shift, which describes lithium (d0.0.41p) and helium (d0
.0.3p for triplet and d0.0.14p for singlet helium! ex-
tremely well.
6444 ©2000 The American Physical Society
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The insertion of a single scattering channel can be re
sented as a perturbation by a projection operator. In this c
it has been shown@1,8,9,12# that the eigenvalues of the pe
turbed system remain trapped between the unperturbed
genvalues. This trapping puts a strong restriction on per
bations to long-range spectral correlations; indeed, in
limit \→0 and L→`, the perturbed spectral rigidity ca
differ from the unperturbed one by at most some val
bounded by 0 and 2.

We have calculated the lowest 36 000 states of the S
spectrum for magnetic quantum numbersm50 ande523
and a range of quantum defects. The results ford050 ~hy-
drogen! andd05p/2 ~‘‘lithium’’ ! for values of the effective
\21, k,600, are shown in Fig. 1. These values span and
well beyond typical experimental values.~the experimental
NNS statistics@2# correspond tok;130–150). Figure 1
shows that for ourk,600 range, deviations from Poissonia
or hydrogenic (d050) behavior are substantial. Even fo
such small values of the effective\, however, it is evident
that the perturbed curves are not obtained by a simple c
stant shift.

The electronic core yields a combination of Coulomb a
s-wave scattering. The Coulomb scattering genera
Gutzwiller periodic orbits~PO’s!: geometric orbits. The ef-
fect of thes-wave (d0) scattering is to generatediffractive
trajectoriesO(A\) in amplitude weaker than isolated ge
metric PO’s. For atomic core scattering, orbits which close
the nucleus correspond to either periodic or half-periodic
bits: hence—for chaotic or regular dynamics—every diffra
tive orbit resulting from a single scattering is paired with
geometric periodic orbit or a half-periodic orbit of the sam
action. In the Stark case there are no half-period contri
tions; in the magnetic field case there are half-period diffr
tive contributions~theD orbits seen in Ref.@7#!. All multiple
scattering diffractive orbits can likewise be associated wit
given combination of geometric periodic or half-periodic o

FIG. 1. Rigidities calculated from quantal spectra of hydrog
~H! and lithiumlike ~Li ! atoms ate523 for two different values
k5250 and 600~i.e., effective\215250 600). The values ofk are
indicated on the graphs. The straight line indicates theL/15 Poisson
limit. The figure shows that the nonhydrogenic rigidities follow
significantly different curve. Surprisingly, given the\ dependent
nature of the diffractive process, the perturbed curves are essen
independent of\ below the saturation value ofL;Lmax. The
curves from our final semiclassical formula,@Eq. ~9!#, using either
the semiclassical value of the constant shift (x50.16) or the cor-
responding quantum (x50.21) value, are superimposed on thek
5600 nonhydrogenic quantal rigidity, showing the excellent agr
ment and the relatively modest effect of the uncertainty in the s
x.
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bits. In contrast, in billiard systems diffractive orbits are ge
erally unrelated to the geometric periodic orbits. Their p
liferation relative to geometric orbits in the chaotic regime
not restricted by this ‘‘pairing.’’ This results in a nonvanish
ing semiclassical contribution@17#.

For integrable atomic spectra, the geometric contribut
to the staircase functionNG(k)5N G

s (k)1N G
osc(k) includes

a sum over contributions@18# from integrable tori. In the
scaled atomic spectra,N G

osc(k);Ak( j (Aj /Tj )e
i (Sjk2a jp/2)

The amplitudesAj are the Berry-Tabor amplitudes for res
nant tori which, in action angle variables, anAj

5A2p/uv•]I j /]Tj uDet$]u/]I j%.
All tori contain just one PO that collides with the nucleu

Trajectories that can diffract are therefore isolated in
usual sense. The amplitudeAD of the contribution of a par-
ticular single-scatter isolated diffractive trajectory of acti
S, in our 2D system, was given in @7# AD

j

5Sj /pA2p/m12k sind0e
id0 sinf, where m12 is an element

of the reduced monodromy matrixM , andf is the angle of
incidence of the orbit relative to the field direction. In int
grable systems,m12}S. HenceAD scales asAS/k. We in-
vestigate the ratio of the diffractive to corresponding ge
metric contribution,AD

j /AG
j 5ADTj /(kAj ) which we write

as AD
j /AG

j 5 iC j sind0e
id0Sj /k. By a unitary transform to ac-

tion angle coordinates we can show@16# that Cj;v1
( j )v2

( j ) ,
where thev are the frequencies of motion along the tw
independent degrees of freedom. HenceCj are independen
of k and do not scale with orbit length. They are nea
constant and fluctuate weakly about an average value@16#.

From the Fourier transforms of scaled spectra~see, e.g.,
Fig. 2!, we can confirm this behavior. TheAD /AG ratios and
hence theCj statistics are obtained numerically from the fir
;50 pairs.

n

lly

-
ft

FIG. 2. Amplitudes of Fourier transforms~FT! of scaled spectra
plotted against scaled actionsS/2p for hydrogen and a lithiumlike
atom fore523. The results are from a fully quantal calculation.S
ande are in atomic units. The figure illustrates the relative impo
tance of integrable tori, isolated PO’s, and diffractive orbits in d
ferent regimes. In the nonhydrogenic atom, forS not too large,
one-scattern51 diffractive orbits are dominant while the ampl
tudes of multiple-scatteringn.1 diffractive orbitsO(\n/2) are rela-
tively weak. In the very largeS regime @L;O(1)#, however, the
proliferation in the number ofn- scatter orbits with increasing ac
tion means that then.1 contribution becomes important. The ins
amplifies the region aroundS;17. The amplitudes of the diffrac
tive orbits can obtained from the~complex! difference of the hydro-
gen and lithium traces.
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Since the ratio of the one-scatter diffractive orbits to t
resonant tori contributions isO(S/k), which in the unscaled
spectra isO(\T), on classical time scales diffraction has
very small effect, but on quantum time scales (T;1/\) both
contributions are of the same order. We show that a se
classical analysis of the rigidity is sufficient to reprodu
such essentially quantum phenomena.

We have also calculated the lowest 10 000 states of
diamagnetic probleme520.6 ~near integrable!, and e5
20.1 ~chaotic!. The results are in Fig. 3~inset!. In the cha-
otic case we find almost no perturbation of the hydroge
result. Isolated hyperbolically unstable orbits contribute l
u22Tr M u21/2, which vanishes exponentially with the orb
period. In such a system,m12 typically diverges with the
same Lyapunov exponent as TrM . HenceAD

j /AG
j is O(A\)

regardless of trajectory length. Proliferation of diffractive o
bits relative to geometric ones is restricted to additional h
period contributions by some orbits, in contrast to the billia
result@17#, where any fraction may contribute. We conclu
that, in the accessible\ range, the diffractive effect remain
small for the chaotic atom, but represents a substantial e
in the integrable case, on quantum time scales.

In the KAM system, deviations qualitatively similar i
form to the integrable case occur. We do not attempt a
orous analysis of systems with a mixed classical phase sp
but the numerics support the notion that the structure of
Berry-Tabor formula @18# is retained for near-integrabl
KAM systems @19#, and that our analysis could also fin
application in such systems.

The preceding arguments are of course incomplete for
rigorous development of a semiclassical limit, as we do
consider multiple scattering effects such as the creation
the combination orbits. However, we will see that in the
numerically accessible regime~and indeed far beyond ex
perimental resolution! it is not necessary to consider suc
effects to accurately reproduce the diffractive corrections
the spectral statistics forL*O(1), up to asmall constant
correction.

FIG. 3. Comparison between the quantum mechanical~QM!
result from numerical diagonalization and the semiclass
~Sem.Class! result from Eq.~9! for the integrable case of atoms i
electric fields for a scaled fielde523 for k;600 andx50.21. In
order to expose the approximately logarithmic nature of the diffr
tive correction, here we plot thedifferencebetween the hydrogenic
and diffractive rigidities. The inset shows the corresponding~quan-
tal! results for atoms in magnetic fields for the near-integrable
mixed case~solid line,e520.6 andk;150) which is qualitatively
similar to the integrable case and the fully chaotic rigidity diffe
ences~dotted line,e520.1, andk;125) which are;0.
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We now analyze the case of a nonhydrogenic Stark at
Since we will only be interested in long orbits, for which th
uniformity principle @20# can be invoked to connect perio
with action, we can write the Berry-Tabor formula as a su
over all periodic orbitsj ~including retracing to negative
time! in the form

N G
osc~k!52 ik3/2

De

Dk
(

j

Aj

Sj
ei (Sjk2a jp/2). ~2!

HereSj anda j , are the scaled action and the Maslov inde
Aj is the scaled amplitude factor from Ref.@18#, Dk

21

5]N s/]kue , andDe
215]N s/]euk . Note thatDk /De scales

ask.
The contribution to the spectral staircase from the cor

sponding single-scatter diffractive periodic orbits yields
sum over the same set of periodic orbits as in Eq.~2!:

N D
osc~k!5sind0Ak

De

Dk
(

j
CjAje

i (Sjk2a jp/26d0), ~3!

where the phase shift6d0 is positive for forward time trac-
ings, and negative for negative time retracings.

The rigidity formula~1!, which is easily adapted for the
problem in hand where thelevelsare k i , leads to integrals
involving the products ^NGNG&k , ^NGND&k , and
^NDND&k . These products involve many rapidly oscillatin
terms, which, following Berry@13#, we assume to vanish
upon averaging. This approximation is usually known as
diagonal approximation, but here we retain different~off-
diagonal! trajectories with identical action, which occur du
to diffraction.

The resulting equation for the rigidity can be written

Dd0~L,Lc!5L/151DDG~L,Lc!1DDD~L,Lc!, ~4!

where

DDG~L,Lc!524k2sin2d0S De

Dk
D 2

3(
j

1

CjE
0

2p/DkLc
dS~Aj

2/S!

3d~S2Sj !G~DkLS/2!, ~5!

DDD~L,Lc!52k sin2d0S De

Dk
D 2

3(
j

1

Cj
2E

0

2p/DkLc
dSAj

2

3d~S2Sj !G~DkLS/2!; ~6!

the sum is now only over positive traversals, andG(y)51
2F2(y)23@F8(y)#2 @F(y)5siny/y# is Berry’s orbit selec-
tion function, which is similar to the step functionQ(y
2p). We have had to introduce an upper cutoff to the in
grals, which will be seen to diverge. This divergence is
direct result of neglecting the rapidly oscillating terms, a
will be discussed further below. We now concentrate
evaluating the integrands of Eqs.~5! and~6!. For long orbits,

l
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we invoke the Hannay–Ozorio de Almeida sum rule@20#,
which can be expressed as limS→`( jAj

2d(S2Sj )
5(Dk /De

2)/2pk3, which is independent ofk. We consider
this to be accurate forS.S* , so that our result for Eq.~4!
will only be accurate forL,Lmax52p/DkS* . IndeedLmax
also marks the onset of nonuniversal deviations of the n
diffractive result from the simpleL/15 dependence@13#. In-
serting the sum rule into Eqs.~5! and~6!, averaging over the
distribution of Cj and evaluating the integrals, leads
closed form solutions that can be expressed in terms of
cial functions@16#. Here we only write out the asymptoti
approximations to the solutions:

DDG~L,Lc!;2
2^Cj&sin2d0

pkDk
F ln

2pL

Lc
1gE2

9

4G , ~7!

DDD~L,Lc!;
2^Cj

2&sin2d0

k2Dk
2 @Lc

212L21#, ~8!

wheregE is Euler’s constant.kDk is a constant, independen
of k, and;22e for our Stark spectra. The result is valid fo
L.Lc , and the ambiguity inLc leads to an ambiguity in the
constant term. ForL!Lc both DDD and DDG vanish. To
proceed, one should invoke the semiclassical sum rule du
Berry @13#. It is natural then to identifyLc as 2p/DkSc ,
~e.g.,Lc;0.94 for the case in Fig. 3!, whereSc is the point
where the semiclassical and quantum asymptotes for
form factor coincide. Since we have neglected both o
diagonal corrections and higher order scattering contri
tions, we cannot expect to be able to evaluate the cons
term correctly. In this case we can simply setLc to unity, and
accept that our result may not be accurate aroundL.1. We
note that in the Gaussian orthogonal ensemble case it is
not possible to evaluate the constant term semiclassic
@13#.

The final result for the rigidity is then
e
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Dd0~L !5D0~L !1
sin2d0

e F ^Cj&
p

ln L2
^Cj

2&
2eL G1x ~9!

for Lmax*L*1, wherex is the constant shift. ForL&1,
Dd0(L)5L/15. The final formula hence does not contain t
effective Planck’s constant, proving the most surprising f
ture of Fig. 1, namely, that despite the\-dependent nature o
the diffractive corrections, our quantal results~below Lmax)
are essentially\ independent.

We find ^Cj&.1.8, and̂ Cj
2&.^Cj&

2 for thee523 case.
We stress that these were not free parameters. WithLc;1
from Eqs.~7! and ~8! we find x;0.16 for d05p/2. How-
ever, we estimate from the quantal results thatx;0.21. The
correction required can be attributed to the neglect of b
higher order scattering and off-diagonal contributions.

Our result is compared with the fully quantal valu
shown in Fig. 1, and the quantal and semiclassical rigidi
are plotted in Fig. 3. The agreement~to within the small
correction tox) is extremely good up toLmax, where the
breakdown was expected. The divergent nature of Eq.~9! for
L,1 is clearly seen. The sin2d0 dependence has been ve
fied by considering several different defect values~not
shown! @16#.

To summarize, we have combined the semiclass
theory of diffraction and atomic quantum defect theory w
the Berry-Tabor trace formula to give diffractive correctio
to the spectral rigidity of atoms in fields. We show th
within a small constant shift, the semiclassical one-sca
results agree extremely accurately with the fully quantal
sults.
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