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Spectral properties of atoms in fields: A semiclassical analysis

P. N. Walker and T. S. Monteiro
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We develop a semiclassical theory for the spectral rigidity of nonhydrogenic Rydberg atoms in electric
fields, and evaluate the significant deviations from the well-known Poissonian behavior in the hydrogenic case.
The resulting formula is shown to be in excellent agreement with the exact quantal result. We also investigate
diamagnetic atoms; we find that, in contrast to the classically integrable atoms, diffraction has a small effect on
the spectral rigidity in the classically chaotic atom. We show that our predictions can also be of use in the
mixed phase space regime.

PACS numbd(s): 05.45~a, 03.65.Sq, 32.60.i

The short-range spectral properties of nonhydrogenic RyHfor L=0(1)] by classical dynamical correlations. Far
dberg atoms in external fields were recently found to have arc O(1) it converges universally to the fort(L)=L/15 for
unexpected charact¢l]: the nearest neighbor distribution symmetry reduced spectra.
was neither Poisson nor Wigner-Dyson, but close to a new The hydrogen atom in a static electric fiétf strengthF)
generic intermediate class known ashalf-Poisson These or in a magnetic fieldof strengthB) provided some of the
findings have been investigated experimentally for heliunmcleanesillustrations of integrability, mixed phase space, and
atoms in electric field$2], following much interest in the chaos in a real systefil4]. The dynamics of the electron is
dynamics of nonhydrogenic atoms in weak fields and théwo-dimensional and has a useful scaling property: the clas-
effects ofcore-induced chaof3—7]. Concurrently, there has sical dynamics depends only on a scaled energyE«?,
also been much interest in such intermediate nearest neighthere x=F ~1 for the electric field case and=B~1? for
bor distributions[8,9], with broad application in problems the magnetic field case. This property is exploited in both
such as electron-electron interactions in closed mesoscopaxperiment and theory. Spectra are obtained at fixeand
devices[9,10], the metal-insulator transitiofil1], intruder  the corresponding eigenvalues represent effective values
states in nuclear physi¢42], and inclusions in billiard$8]. of #~1 with fixed classical dynamics. Hydrogen in a mag-
These studies of intermediate statistics have exclusively ennetic field is near integrable foe<—0.5; as the field is
ployed quantum calculations. increased it makes a gradual transition to full chaog=at

Here we obtain spectral rigidities of nonhydrogenic Ryd-—0.1. The Hamiltonian for hydrogen in an electric field is
berg atoms in electric and magnetic fields from an accuratalways separable. We consider field values where the eigen-
quantal calculation. We find interesting and substantial deyalues are well below the ionization thresholdeat — 2, so
viations from Poissoniathydrogeni¢ behavior in the inte-  the system may be considered integrable and bound.
grable (electric field and near integrabléweak magnetic Most experiments in fact investigate atoms other than hy-
field) cases. We develop a semiclassical theory for Starlrogen(typically He, Li, or RH. The useful scaling property
spectra which is in good agreement with the quantal resultsmay still be exploited, but the inner core of electrons yields
and show that one-scatter diffractive orbits account for moshontrivial effects: additional weak spectral modulations and
of the effect. In contrast we find a comparatively small effectspectral statistics near the Wigner-Dyson limit even for the
in the case of fully chaotic Rydberg atoms. To our knowl-integrable—near integrable regirié—6]. Hence the interest
edge this is the first analysis of the curve form of the spectrajn so-calledcore-induced chaosThe additional modulations
rigidity for a generic atom, which we derive from classical are accurately described by diffractive periodic orbit theory
dynamical information. Our semiclassical analysis should b7 15]. An investigation[1] of the next nearest neighbor
extendable to the mixed phase space Kolmogorov-Arnold¢{NNS) statistics for the lowest 40000 eigenvalues showed

Moser (KAM) case. that they are only near the Wigner-Dyson limit for the lowest
The spectral rigidity, defined as ~1000 states. For small they were found to make a tran-
sition to an intermediate distributioP(s)~ ase 2% with
_p (L2 (a~3-4), near to the half-Poisson distributi¢ior which
A(L)=min-| de{[ ME+e)—A-Bel)e, (1) ¢=4).
AB —Liep

Rydberg atoms and molecules are well described by quan-
tum defect theory, one of the most widely used theories in
where V(E) is the spectral staircase functign,is the den-  atomic physic§14,3]. The core is described by a set of phase
sity of states(assumed constant over the rangelofo be  shifts (quantum defecjss, in each partial wave, quantifying
consideregl and (- --)g denotes averaging over the spec-the departure from pure Coulomb behavior. We consider the
trum, was first analyzed semiclassically for classically inte-s-wave scattering case, whe#g is the only nonzero phase
grable and chaotic systems by Beffg]. It provides a mea- shift, which describes lithium §=0.41) and helium ¢,
sure of long-ranged deviations from the Weyl rule for=0.37 for triplet and 8,=0.14r for singlet helium ex-
spectral density, and for diffraction-free systems is controlledremely well.
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FIG. 1. Rigidities calculated from quantal spectra of hydrogen -2 0

(H) and lithiumlike (Li) atoms ate=—3 for two different values
x=250 and 60Gi.e., effectiver,~1=250 600). The values of are
indicated on the graphs. The straight line indicates & Poisson FIG. 2. Amplitudes of Fourier transforn{ET) of scaled spectra
limit. The figure shows that the nonhydrogenic rigidities follow a plotted against scaled actio®&2 for hydrogen and a lithiumlike
significantly different curve. Surprisingly, given thie dependent —atom fore=—3. The results are from a fully quantal calculatiéh.
nature of the diffractive process, the perturbed curves are essentialjnd € are in atomic units. The figure illustrates the relative impor-
independent oft below the saturation value of ~L,,,. The tance of integrable tori, isolated PO's, and diffractive orbits in dif-
curves from our final semiclassical formu[&g. (9)], using either ~ ferent regimes. In the nonhydrogenic atom, mot too large,
the semiclassical value of the constant shjft0.16) or the cor- One-scatten=1 diffractive orbits are dominant while the ampli-
responding quantumy(=0.21) value, are superimposed on the tudes of multiple-scattering>1 diffractive orbitsO(%"?) are rela-
=600 nonhydrogenic quantal rigidity, showing the excellent agreelively weak. In the very larges regime[L~O(1)], however, the

ment and the relatively modest effect of the uncertainty in the shifforoliferation in the number ofi- scatter orbits with increasing ac-
X tion means that the>1 contribution becomes important. The inset

amplifies the region aroun8~17. The amplitudes of the diffrac-
etjve orbits can obtained from tHeomplex difference of the hydro-

The insertion of a single scattering channel can be repr e
sented as a perturbation by a projection operator. In this cas@&" and lithium traces.
it has been showfi.,8,9,1 that the eigenvalues of the per- o | contrast, in billiard systems diffractive orbits are gen-
turbedl systerﬁ_ remain trapped between the. u.nperturbed eé’rally unrelated to the geometric periodic orbits. Their pro-
genvalues. IT IS trapping puts f‘ stronlg restriction on Pem:]rﬁferation relative to geometric orbits in the chaotic regime is
bations to long-range spectral correlations; indeed, in the o restricted by this “pairing.” This results in a nonvanish-
limit #—0 andL—oe, the perturbed spectral rigidity can ing semiclassical contributiofL.7].
differ from the unperturbed one by at most some value, "o jntegrable atomic spectra, the geometric contribution

bounded by 0 and 2. ; : —A/S 0s ;
o the staircase functiaVg(«) = Ng(k) + N (k) includes
We have calculated the lowest 36 000 states of the Starlé sum over contribution§18] from integrable tori. In the

spectrum for magnetic quantum numberns-0 ande=—3 scaled atomic spectra\/"GS“(K)~\/EEj(Aj /Tj)e‘(si"‘“i"/z)

and a range of quantum defects. The results&pr 0 (hy- . .
drogen and 8,= m/2 (“lithium” ) for values of the effective The amplitudes4, are the Berry-Tabor amplitudes for reso-
pant tori which, in action angle variables, atA,

#~1, k<600, are shown in Fig. 1. These values span and go°

. . . =27l w-91;19T;|Detdbll}.

well beyond typical experimental value@he experimental v . 1770 ] . .

NNS sé\tisticg&] corrgspond t0K~13e§_150)p Figure 1 All tori contain just one PO that collides with the nucleus.
shows that for ouk<600 range, deviations frorﬁ Poissonian Trajectories that can diffract are therefore isolated in the

or hydrogenic §,=0) behavior are substantial. Even for qsulal se_nszla. The am.phtludqt,j %f_f:‘he gontrlbgtlon of a; par-
such small values of the effective, however, it is evident ticu arsing e-scatter isolated di ract|v_e traje(_:tory 0 ajctlon
that the perturbed curves are not obtained by a simple cor® 1N~ our 2D system, was given in[7] Ap
stant shift. =Sj/m\2m/mypxk sin &€ %sing, wherem,, is an element

The electronic core yields a combination of Coulomb and®f the reduced monodromy matri, and ¢ is the angle of
swave scattering. The Coulomb scattering generate?c'dence of the orbit relative to the field direction. In_ inte-
Gutzwiller periodic orbits(PO’s): geometric orbits The ef-  grable systemsm,,>S. HenceAp scales as/S/x. We in-
fect of thes-wave (5,) scattering is to generatdiffractive ~ vestigate the ratio of the diffractive to corresponding geo-
trajectoriesO(y7) in amplitude weaker than isolated geo- Metric contribution Ap/Ag=ApT;/(.A;) which we write
metric PO’s. For atomic core scattering, orbits which close aBSAb/AL=iC; sin&€e*S /x. By a unitary transform to ac-
the nucleus correspond to either periodic or half-periodic ortion angle coordinates we can sh§®6] that C;~ o{’»}’,
bits: hence—for chaotic or regular dynamics—every diffrac-where thew are the frequencies of motion along the two
tive orbit resulting from a single scattering is paired with aindependent degrees of freedom. Heleare independent
geometric periodic orbit or a half-periodic orbit of the sameof « and do not scale with orbit length. They are nearly
action. In the Stark case there are no half-period contribueonstant and fluctuate weakly about an average VdlGg
tions; in the magnetic field case there are half-period diffrac- From the Fourier transforms of scaled spedsee, e.g.,
tive contributiongthe D orbits seen in Ref.7]). All multiple Fig. 2), we can confirm this behavior. Th&, /A ratios and
scattering diffractive orbits can likewise be associated with ehence theC; statistics are obtained numerically from the first
given combination of geometric periodic or half-periodic or- ~50 pairs.
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We now analyze the case of a nonhydrogenic Stark atom.

05 7 SemClass Since we will only be interested in long orbits, for which the
_ uniformity principle[20] can be invoked to connect period
= with action, we can write the Berry-Tabor formula as a sum
« over all periodic orbitsj (including retracing to negative
A time) in the form
<

N%SC(K) =—j K3/2&2 ﬁei(ij—aj ml2). 2)
AT S
10 20 30
L HereS; anda;, are the scaled action and the Maslov index,

FIG. 3. Comparison between the quantum mechanigan) A iS_the scaled amplitude factor from Refl8], A '
result from numerical diagonalization and the semiclassical= N/ k|, andA_ *=JN"Jel,. Note thatA /A, scales
(Sem.Claspresult from Eq.(9) for the integrable case of atoms in as«.
electric fields for a scaled field= — 3 for k~600 andy=0.21. In The contribution to the spectral staircase from the corre-
order to expose the approximately logarithmic nature of the diffracsponding single-scatter diffractive periodic orbits yields a
tive correction, here we plot thaifferencebetween the hydrogenic sum over the same set of periodic orbits as in €.
and diffractive rigidities. The inset shows the correspondimgn-
tal) results for atoms in magnetic fields for the near-integrable and
mixed caseésolid line,e= — 0.6 andx~150) which is qualitatively
similar to the integrable case and the fully chaotic rigidity differ-
ences(dotted line,e= —0.1, andx~125) which are~0. where the phase shift &, is positive for forward time trac-

ings, and negative for negative time retracings.

Since the ratio of the one-scatter diffractive orbits to the The rigidity formula(1), which is easily adapted for the
resonant tori contributions i®(S/«), which in the unscaled problem in hand where thievelsare «;, leads to integrals
spectra isO(%T), on classical time scales diffraction has ainvolving the products (NgNg)., (NcNp)., and
very small effect, but on quantum time scal@s-(1/4) both ~ (NpAp),. These products involve many rapidly oscillating
contributions are of the same order. We show that a semierms, which, following Berry[13], we assume to vanish
classical analysis of the rigidity is sufficient to reproduceUpon averaging. This approximation is usually known as the

A, .
N%SC(K):sinaoJZA—K; CjA€Sixam2500) - (3)

such essentially quantum phenomena. diagonal approximationbut here we retain differenfoff-
We have also calculated the lowest 10000 states of theiagona) trajectories with identical action, which occur due

diamagnetic probleme= —0.6 (near integrable and e= to diffraction.

—0.1 (chaoti9. The results are in Fig. 8nse). In the cha- The resulting equation for the rigidity can be written

otic case we find almost no perturbation of the hydrogenic
result. Isolated hyperbolically unstable orbits contribute like
|2—TrM|~*2 which vanishes exponentially with the orbit \ynere
period. In such a systemm;, typically diverges with the

same Lyapunov exponent as NIt HenceAl/AL is O( /%)
regardless of trajectory length. Proliferation of diffractive or-

bits relative to geometric ones is restricted to additional half-

A%(L,L)=L/15+APC(L,L.)+APP(L,Ly), (4

A.\?
APCS(L,L)=— 4K23ir1250(A—)

period contributions by some orbits, in contrast to the billiard - 27/A L 5

result[17], where any fraction may contribute. We conclude X 2 Ci Jo dS(A{/S)

that, in the accessiblg range, the diffractive effect remains .

small for the chaotic atom, but represents a substantial effect X 6(S—S)G(A,LS/2), (5

in the integrable case, on quantum time scales.
In the KAM system, deviations qualitatively similar in
form to the integrable case occur. We do not attempt a rig-

A 2
APP(L,Ly) =2« sin250(—f)
orous analysis of systems with a mixed classical phase space,

Ay

but the numerics support the notion that the structure of the h , (278 ke

Berry-Tabor formula[18] is retained for near-integrable XZ ij dSAf

KAM systems[19], and that our analysis could also find ' 0

application in such systems. X 8(S—S,)G(A,LS/2); (6)

The preceding arguments are of course incomplete for the
rigorous development of a semiclassical limit, as we do nothe sum is now only over positive traversals, a@Bfy)=1
consider multiple scattering effects such as the creation of F?(y)—3[F’(y)]? [F(y)=sinyly] is Berry’s orbit selec-
the combination orbits However, we will see that in the tion function which is similar to the step functio®(y
numerically accessible regim@nd indeed far beyond ex- — ). We have had to introduce an upper cutoff to the inte-
perimental resolutionit is not necessary to consider such grals, which will be seen to diverge. This divergence is a
effects to accurately reproduce the diffractive corrections talirect result of neglecting the rapidly oscillating terms, and
the spectral statistics fdc=0(1), up to asmall constant will be discussed further below. We now concentrate on
correction. evaluating the integrands of Eq$) and(6). For long orbits,
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we invoke the Hannay—Ozorio de Almeida sum r{&g], s o sin25o[<Cj> <CJ.2>

which can be expressed as §m.3;A’5(S-S) A%(L)=ANL)+— | InL-—>-—1+x
=(A/A?)/27 k8, which is independent ok. We consider

this to be accurate fo8>S*, so that our result for Eq4)

will only be accurate forL<Lm_ax=27r/AKS"_. I_ndeedLmaX for La=L=1, wherey is the constant shift. FoL=<1,
also marks the onset of nonuniversal deviations of the nony %(L) = L/15. The final formula hence does not contain the

diffractive result from the simpl&/15 dependencfL3]. In-  eftective Planck’s constant, proving the most surprising fea-
serting the sum rule into Eqe5) and(6), averaging over the e of Fig. 1, namely, that despite thedependent nature of

distribution of Cj. and evaluating the integr_als, leads 10 \he giffractive corrections, our quantal resultelow L )
closed form solutions that can be expressed in terms of spey essentiallyi independent.

cial functions[16]. Here we only write out the asymptotic ;. find(C;)~1.8, and(CJ?)z(C,—}Z for the e= — 3 case.

approximations to the solutions: We stress that these were not free parameters. Withl
2(C,-)sin250[ 2L 9 from Egs.(7) and (8) we find y~0.16 for §o= /2. How-

APS(L,Lo)~— T nT—+7% 7| (7)  ever, we estimate from the quantal results that0.21. The
miede | € correction required can be attributed to the neglect of both
2(C-2>sin25 higher order S(_:attering and off.-diagonal contributions.
ADD(L,LC)~’TO[LC’1—L‘1], (8) Our result is compared with the fully quantal values
KA shown in Fig. 1, and the quantal and semiclassical rigidities

are plotted in Fig. 3. The agreeme(io within the small
correction toy) is extremely good up td ., Where the
breakdown was expected. The divergent nature of ®dor

wherevyg is Euler’'s constant«A . is a constant, independent
of x, and~ — 2e€ for our Stark spectra. The result is valid for

L>L., and the ambiguity ir.c leads to an ambiguity in the | 1 s clearly seen. The s, dependence has been veri-

DD DG H
constant term. FoL <L both A”" and A”" vanish. To  fiaq by considering several different defect valug®t
proceed, one should invoke the semiclassical sum rule due E‘howr) [16].

Berry [13]. It is natural then to identifyL. as 27/A,S;, To summarize, we have combined the semiclassical

(e.9.,Lc~0.94 for the case in Fig.)3wheresS; is the point  theory of diffraction and atomic quantum defect theory with

where the semiclassical and quantum asymptotes for thge Berry-Tabor trace formula to give diffractive corrections
form factor coincide. Since we have neglected both off-; he spectral rigidity of atoms in fields. We show that

diagonal corrections and higher order scattering contribuyithin a small constant shift, the semiclassical one-scatter

tions, we cannot expect to be able to evaluate the constaptgyits agree extremely accurately with the fully quantal re-
term correctly. In this case we can simply kgtto unity, and g jts.

accept that our result may not be accurate ardusd . We

note that in the Gaussian orthogonal ensemble case it is also The authors gratefully acknowledge helpful discussions

not possible to evaluate the constant term semiclassicallwith E. Bogomolny, D. Delande, D. Ullmo, P. Braun, and S.

[13]. Owen, and support by the EPSRC. We thank D. Delande for
The final result for the rigidity is then pointing out the relation betweetA , ande.
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